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S M A R T  E N E R G Y  S Y S T E M S

D emand response, a cornerstone 
of smart-grid technology, lets 
consumers participate directly in 
energy markets by limiting their 
energy use during periods of 

emergency or peak demand. In a direct-control 
demand-response approach, an electricity service 
provider (ESP) offers consumers discounts or 
other incentives if they agree to let the ESP send 
load-shed instructions (LSIs) to specified appli-
ances. For instance, an ESP might adjust the set 
points on an air conditioner’s thermostat. Direct 
control can save consumers money and provide 

ESPs with valuable tools for 
controlling energy generation 
costs and grid stability. But 
these benefits depend on the 
LSIs producing the expected 
response from appliances.

Load-shed verif ication 
(LSV) can improve reliabil-
ity and eliminate freeloaders 
who accept incentives without 
implementing direct controls. 

However, this generates many trust challenges 
because the consumer owns and operates the ap-
pliance and because effective demand response 
depends on the integrity of the appliances’ re-
sponses to LSIs.

To address these challenges, we’ve imple-
mented an algorithm based on a nonintrusive 

load monitoring (NILM) learning phase that 
runs during an initialization period at the ESP. 
The result is a distributed NILM algorithm—
a nonintrusive load-shed verification (NILSV) 
algorithm deployed on the residential meter. We 
built a prototype and conducted experiments in 
a residence to illustrate NILSV’s promise along 
with some of its challenges. 

LSV Challenges
Developing a trust model for direct control 
of residential consumer appliances is a well- 
recognized challenge.1,2 Designing and deploy-
ing approaches wherein the ESP has a secure, 
remote, and tamper-resistant verification agent 
in each appliance will be difficult owing to the 
appliances’ diversity. To fully address the trust 
issue, a solution must secure not only the com-
munications path and the load controller host-
ing the trusted agent but also the load’s con-
trol connections. Securing these connections 
for the many consumer appliances to which 
control must be retrofit—such as HVAC (heat-
ing, ventilation, and air conditioning) systems, 
water heaters, and pool pumps—is largely 
impractical.

We can simplify this problem by using uni-
directional authentication of control messages 
from the ESP to the appliance. This method en-
ables several communication options, including 
public webpage messages (such as RSS feeds), 
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FM radio broadcasts, and local broad-
casts from residential meters. We can at-
tain LSV by using the residential power 
meter to monitor electrical use and by 
analyzing load changes. When the me-
ter detects an appropriate load change, 
it sends an LSV response message. Gen-

erally, residential users don’t have a suf-
ficient energy-management system to 
respond to an LSI calling for a specific 
load-shed level. Therefore, we must base 
direct control on individual appliances’ 
instructions.

A promising approach to this prob-

lem uses NILM technology (see the 
“Related Work in Nonintrusive Load 
Monitoring” sidebar).3 NILM is a 
direct-control approach that takes ag-
gregate electric-metering data, such as 
the data in Figure 1, and extracts a col-
lection of appliance load profiles and use 

A t one time, electric power meters displayed analog data, 

which a visiting meter reader read periodically. Wireless 

communications reduced this burden by allowing automated 

meter reading (AMR), at first from a truck that drove near the 

meter and later from a pole-top unit. Meters’ wireless commu-

nication and computing and sensor capabilities will significantly 

improve with smart-grid efforts. These advanced meter infra-

structure (AMI) capabilities can improve theft detection, outage 

management, and power-quality assessment, as well as AMR.

Demand Response
A significant AMI application is demand response, in which me-

ters collect interval readings, transmit signals to appliances, and 

provide usage data to consumer portals to support power-use 

patterns that reduce electricity costs. These costs vary signifi-

cantly over time because more expensive techniques must 

supplement a baseline of cheap generation techniques when 

demand peaks arise. If demand shifts from peak periods to off-

peak periods, considerable savings are possible.

One strategy gives indirect control to a consumer. The elec-

tricity service provider (ESP) assigns a price for electricity in a 

given time interval; the customer uses this information to make 

decisions about power use. In direct-control strategies, the ESP 

sends signals to consumer appliances to alter their use, typically 

by limiting use during peak demand periods. Each approach has 

advantages and disadvantages. Indirect control puts consumers 

in charge but makes them responsible for demand-response ac-

tions. Direct control aids consumers by automating demand re-

sponse but might provide more or less response than they want.

NILM
George Hart introduced the first NILM algorithm,1 which deter-

mined each load’s state by parsing the real power graph to find 

step transitions, clustering transitions by similar power changes, 

and classifying the clusters as individual appliances. The method 

assumed previous knowledge of the individual monitored ap-

pliances and an interactive training phase on the collection of 

appliances. The algorithm’s accuracy was limited owing to diffi-

culties detecting multistate appliances and differentiating loads 

with similar power signatures.

Researchers have refined this technique and improved on it 

by using complex power, state tables, frequency analyses, and 

more sophisticated learning techniques, such as genetic algo-

rithms.2–6 These techniques have allowed commercial NILM to 

classify small loads accurately without prior training or knowl-

edge of the operating environment.

Unfortunately, these advanced NILM techniques involve 

high computational requirements and detailed sensor data. For 

example, the genetic algorithms that eliminate the interactive 

training phase take 10 minutes to run on a 3-GHz Pentium 4 

machine, whereas the typical AMI meter runs under 100 MHz. 

Advanced techniques such as frequency analysis require meter 

readings at the millisecond scale,6 whereas AMI meters typi-

cally provide no better than one reading per second. More-

over, NILM techniques work best on large datasets, whereas 

AMI meters have little memory and AMI networks have limited 

bandwidth.
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periods for these appliances that would 
account for the data. For instance, if 
an appliance is known to draw 1,000 
watts, a jump of this amount might in-
dicate that the appliance was turned on, 
whereas a drop of this amount might 
mean it was turned off.

Ideally, when residential consumers 
register an appliance for direct control, 
that appliance can receive LSIs but isn’t 
required to provide confirmation of 
compliance. NILM conducted through 
the residential meter can confirm that 
the appliance has acted on the LSIs. 
For instance, suppose an ESP sends a 
household an LSI to turn off a 1,000-W 
appliance. In a predefined time frame, 
the meter will respond with an LSV in-
dicating the appliance’s transition. The 
correct behavior is on  off or off  
off. We call this NILSV. NILSV’s key 
challenge is handling the large amounts 
of detailed data and complex calcula-
tions that aren’t naively suited to typi-
cal residential meters’ low bandwidth, 
computing, and sensor capabilities.

NILSV Requirements
Assume ESP E offers an incentive pro-
gram for the direct control of appliance 
type A. E has information about A’s 
load profile behavior through its own 
testing and data from A’s vendor. Cus-
tomer C contacts E, asking to be en-
rolled in the program in exchange for 
direct control of a specific appliance a 
of type A in C’s home. C or E config-
ures a to receive appropriate LSIs from 
E while operating in C’s residence.

We don’t concern ourselves with ex-
actly how this happens, but we don’t 
assume that this configuration alone is 
sufficient to verify that a receives and 
reacts to the LSIs. This is the NILSV 

problem. How do we implement an 
LSV protocol to verify whether a re-
sponds correctly to LSIs, using only ag-
gregate meter data from C’s residence 

that a typical residential meter senses 
and a typical advanced meter infra-
structure (AMI) network reports?

We must first refine the NISLV  
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Figure 1. A typical power graph. 
Nonintrusive load monitoring takes 
aggregate electric-metering data and 
extracts a collection of appliance load 
profiles and use periods for these 
appliances that would account for the 
data.

Load-shed program:
Offers discount for those willing to turn
off major appliances during peak time

Enroll appliance

ESP Residence

Send load-shed instructions

Obtain load-shed veri�cation

Smart meters

Extract training data

Install specialized monitor

Registered
appliances

Consumers

Figure 2. The nonintrusive load-shed verification (NILSV) process. Consumers 
enroll in load-shed programs and allow electricity service providers (ESPs) to 
install specialized monitors at home. During load-shed operation, the ESPs instruct 
enrolled appliances to switch off, and success is verified at smart meters.
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problem. For instance, we must clar-
ify the “typical” residential meter and 
AMI network’s technical character-
istics. If the meter captures complex 
power at millisecond intervals and 
transmits it over a broadband network 
to a supercomputer, the problem is 
probably a special instance of NILM. 
However, if we assume that the meter 
is a processor running at a few hun-
dred megahertz and possessing no 
more than a few kilobytes of memory, 
and that the AMI network can trans-
mit only a few hundreds of kilobits of 
data each second, then existing NILM 
techniques can’t straightforwardly ad-
dress the problem.

For instance, we assume the proces-
sor is an Atmel AT32UC3A (www.
atmel.com /dyn /resources /prod_
documents/32058S.pdf) running an 
operating system that accommodates 
software and data updates via the AMI 
network. We also assume that the AMI 
network is comparable to ZigBee, with 
a bandwidth of 250 kbps to the back-
haul point. So, the meters’ combined 

communication with a backhaul point 
can’t exceed a bandwidth of 250 kbps. 
We assume that the meter can obtain 
real power readings on a per-second ba-
sis. For this purpose, we use TED 1000 
meters from Energy Inc. We assume 
that the ESP has substantial computing 
power and memory; however, a given 
program might contain millions of me-
ters and appliances.

Ideally, the NILSV protocol should 
provide reasonable assurance of the re-
sponse rate it achieves if it sends out an 
LSI. For instance, NILSV testing might 
show that 90 percent of appliances in 
operation will properly respond to an 
LSI. The NILSV should also help iden-
tify appliances that don’t respond to 
LSIs because they’re unintentionally 
misconfigured or intentionally ignor-
ing LSIs (freeloaders).

Our Approach
Our NILSV approach consists of a 
learning phase that compresses data 
from the meter and sends it via the 
AMI network for detailed analysis on 

a back-end system, and a monitoring 
phase that uses this analysis to design a 
simple state-based agent that performs 
LSV on the meter. Figure 2 shows this 
process; Figure 3 describes the NILSV 
architecture.

The training phase is responsible 
for identifying the appliances in the 
home. We collect learning data by 
installing a monitor in the consum-
er’s smart meter to scan for discrete 
step events—a computationally inex-
pensive process. In our tests, this re-
duced the necessary training data the 
meter needed to report by about 99 
percent, allowing transmission over 
the low-bandwidth AMI network. 
When training data reaches the ESP’s 
back end, the learning algorithm first 
clusters events based on similar power 
usage. The learning algorithm inputs 
the clustering data into a module that 
performs advanced analysis using a 
genetic algorithm to produce an op-
timized finite-state machine (FSM). 
The FSM is represented as a static 
table, which is then deployed in the 
meter at the consumer’s residence.

During the monitoring phase, the 
meter takes readings and conducts 
real-time edge detection to create a 
dynamic table. Upon encountering an 
edge, the meter uses the static table 
and a simple matching algorithm to 
update which appliances are on and 
off in the house and record the results 
in a dynamic table. By keeping the 
dynamic table up to date, the meter 
will always be prepared to respond 
to LSV requests from the back end 
for the enrolled appliance. The goal 
is to respond to LSV requests for a 
specific appliance rather than profile 
all appliances in use. Because appli-
ances meriting direct control typically 
have larger loads, the state tables can 
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Figure 3. NILSV architecture. The system 
contains a centralized, computationally 
intensive module at the ESP and a 
distributed, resource-limited module at 
the smart meter.
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ignore appliances below an energy 
threshold, reducing them to back-
ground noise. 

In addition to updating the dynamic 
table, the meter also uses the edge- and 
appliance-detection modules to iden-
tify when to reenter the learning phase. 
The learning phase will be conducted 
periodically if the appliance-detection 
module finds it necessary or if the con-
troller asks the meter to do so. For in-
stance, relearning might be necessary 
when the consumer introduces a new 
appliance or when the meter has diffi-
culty identifying the correct appliance 
from an edge event.

The Distributed  
NILM Algorithm
This algorithm addresses the NILSV 
problem by detecting a specific appli-
ance using a residential meter.4 We aim 
to split the computation between the 
meter and the back-end system with a 
well-chosen level of communication be-
tween the two.

Edge Detection
In both the learning and monitoring 
phases, the meter’s first goal is to de-
tect abrupt changes in the power read-
ings corresponding to a large appli-
ance turning on or off. The algorithm 
ignores minor changes, allowing the 
meter readings collected every second 
to be represented using only the power 
values at large power changes and the 
corresponding event time. This process 
compresses the data because change 
events are rare compared to the origi-
nal periodic power measurements.

Building the Dynamic Table
The appliance-detection module

• identifies appliances’ current states 
from real-time edge events and cre-
ates the static appliance table using 
the back-end analysis, and

• detects static-table errors, triggers 
the meter to enter the relearning 
phase, and eventually receives an up-
to-date static table.

Two common methods to detect ap-
pliance states are a knapsack algorithm 
and incremental analysis.5 A knapsack 
algorithm finds the combination of ap-
pliances whose total power is maxi-
mized under the constraint that the 
total power is less than the current 
observed power. Incremental analysis 
determines which appliances changed 
their states, on the basis of each edge 
event’s total power change. Continu-
ously running the knapsack algorithm 
is computationally intensive, but in-
cremental analysis is prone to error 
propagation.

To save computational power while 
minimizing error propagation, we de-
veloped a hybrid design that runs a 
modified knapsack algorithm on each 
edge event.4 This detection algorithm 
works well if the static table is accu-
rate, each appliance has discrete finite 
states, and no two appliances consume 
the same power.

Building the Static Table
The first step in back-end data analy-
sis is to establish clusters of on and off 
events to identify the appliances. The 
clustering algorithm accomplishes this 
by taking an interval of data and group-
ing like events by their respective power 
changes.

The learning phase must then iden-
tify grouped power changes to classify 
large appliances and group each appli-
ance’s power change. The most basic 
appliance model is the on/off model; 
however, not all appliances can be ex-
plained by just on/off states. To iden-
tify appliances, we implemented an 
algorithm based on genetic algorithms 
and dynamic programming that builds 
FSMs from edge-event clusters.6,7

When to Learn
The learning schedule consists of me-
ter-initiated reactive learning and con-
troller-initiated proactive learning. 

Relearning Time

State
(on/off)

1

2

3

4
New appliance D

N/AN/A451,4701(C) Heater

N/AN/A651,0501(B) Oven

902,5102005,7452(A) Dryer

Std.MeanStd.Mean

State 2 real power (W)State 1 real power (W)
No. of
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(b)

N/AN/A556501(D) Toaster

Figure 4. Sample (a) static and (b) dynamic tables. The static table stores the 
accurate state information for detected appliances learned at the ESP. The smart 
meter uses the dynamic table to track appliances’ states in real time.
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When either detects the need to learn, 
it informs the other, and the meter 
transmits data until the controller in-
dicates it has sufficient data to build a 
static table. If the meter finds it has no 
table (for instance, on initiation), be-
lieves the consumer has added a new 
appliance, or detects an error in the 
static appliance table, it sends a learn-
ing request. If the controller believes 
that an LSV is incorrect, it can issue 
a learning request. The meter should 
remove appliances no longer present 
in the static table to increase detec-
tion efficiency. Generally, the meter 
has difficulty detecting an appliance’s 
removal without conducting advanced 
analysis. To eliminate removed appli-
ances from the static table, the meter 
will periodically reenter the learning 
phase if the elapsed time since the last 
learning event exceeds a threshold.

Figure 4 shows sample static and 
dynamic tables before and after re-
learning. The back end starts building 
appliance tables from edge-event data 
on requests from the meter (reactive 
relearning) or periodically (proactive 
relearning). We assume the algorithm 
that builds the table finds similar ap-
pliance profiles over multiple days be-
cause residents will be using LSV can-
didate appliances regularly. Therefore, 
the ESP examines the tables created 
from multiple datasets. If it finds an 
appliance whose state-transition pro-
file differs from those of the previously 
detected appliances, it assumes the 
consumer has added a new appliance. 
The controller ends its learning period 
when it doesn’t find new appliances for 
a specified time period. The ESP can 
adjust the learning time and frequency 
to avoid network congestion.

Experimentation
Proving the viability of NILSV and our 
distributed NILM algorithm requires 
significant experimental analysis in a 
wide range of contexts. The following 
experiments demonstrate what’s pos-
sible and the issues we must address. 
We concentrate on verifying the static 
and dynamic tables’ accuracy. To gen-
erate the static table, we implemented 
the algorithm in Java and ran it on a 
high-powered desktop workstation to 
avoid resource limitations. We imple-
mented the dynamic-table-building 
code on an AVR32 simulator for the 
Atmel UC3A0512 chip to simulate the 
smart meters’ processing constraints.

In our LSV test scenario, the home-
owner purchases an appliance and reg-
isters it with the ESP for load shedding. 
The ESP has already independently 
conducted tests to verify the appliance’s 
signature and determined the load fin-
gerprint that should be in the static 
table. The ESP then sends LSIs to the 
house to turn the appliance on and off, 
and NILSV determines whether the ap-
pliance follows the commands.

We conducted an experiment using 
data collected from a typical residential 
home in Urbana, Illinois. We measured 
the aggregate power using TED 1000. 
TED 1000 is nonintrusive and cost-
effective; when installed in the breaker 
panel, it can take one reading per sec-
ond with an accuracy of 2 percent. 
The appliance to identify was a Honey-
well heater operating at 1,500 W. To 
control the device, we installed Insteon 
controllers on the heater, allowing a 
computer to control a set schedule of 
on and off events. We scheduled the 
heater to turn on and off during three 
time periods corresponding to differ-
ent activity levels in the home—the 
middle of the night, early morning to 
afternoon, and evening. For each test 
set, our ESP software generated LSIs 
while the heater was on, instructing it 
to turn off.

We tested the static table by running 
the learning phase on separate days’ 
data and verifying that the heater was 
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Figure 5. Detected appliances from 19 to 21 March. Our prototype system identified 
three loads regularly throughout the experiment.
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present and the same appliances were 
running from day to day. We tested the 
dynamic-table-building algorithm by 
noting the table’s accuracy both when 
the heater was on and when it was off. 
The ESP would interpret a confirma-
tion of the heater being off as a suc-
cessful LSI response and would inter-
pret feedback that the heater was on 
as evidence of a nonconforming appli-
ance. We ran both tests throughout the 
week of 19–27 March 2010 while the 
family was living in the house.

We ran the static-table-building 
algorithm in simulation over all our 
collected data. Figure 5 shows the 
identified loads’ power consump-
tion during our experiment’s first 
three days. Although 19 March had 
two extra unique appliances, the ex-
periment confirmed that the learning 
phase identified the other three loads 
regularly throughout the rest of the ex-
periment. The experiment confirmed 
that the learning phase can run for a 
shorter period of time while still suc-
cessfully identifying the correct load 
signatures and accurately maintaining 
the dynamic table. Even if the learn-
ing phase missed the two larger loads 
in the initial learning phase, when the 
meter did detect them, it would notice 
an error in the static table and initiate 
a relearning phase.

We tested the dynamic tracking by 
applying the static-table-building al-
gorithm’s output from 19 March to 
the week’s data. Figure 6 summarizes 
the results. During the overnight and 
early morning to afternoon tests, the 
dynamic table maintained more than 
90 percent accuracy. However, dur-
ing the evening tests, it dropped to ap-
proximately 80 percent for identifying 
when the heater was on and 85 per-
cent for identifying when the heater 
was off. Testing confirmed the added 
noise during the evening tests reduced 
the algorithm’s accuracy.

Figure 7 illustrates the test home’s 
real-time power measurements during 
a 10-minute period in the evening. The 
heater was scheduled to be on from 

6:30 to 6:35 p.m. During that time, a 
periodic load with roughly the same 
power signature occurred. This load 
turned on and off four times through-
out the 10 minutes. The algorithm 
successfully identified the heater when 
it was on; however, after it turned off 
at 6:35, our algorithm still classified 
the periodic load as the heater. This 
scenario illustrates the difficulty in de-
termining the appliance’s state when 
multiple appliances share the same 
power signature.

Scalability Analyses
For NILSV to be viable, the proposed 
methods must be scalable in band-
width and processing power on AMI 
networks. Throughout experimenta-
tion, the test home yielded an average 
of 1,000 step events, or approximately 
15 Kbytes of data per day. Assuming 
a high-speed backhaul network, band-
width is limited primarily between 
the meters and backhaul points. With 
4,000 meters per backhaul point, the 
bandwidth requirement would be ap-
proximately 60 Mbytes (4,000 × 15 
Kbytes) of traffic per day or 5.5 Kbps 
of bandwidth.

Assuming the use of a network such 
as a ZigBee operating at 2.4 GHz and 
yielding 250 kbps, the algorithm con-
sumes only 2.2 percent of network 
bandwidth. Even assuming a slower 
ZigBee network with only 30 kbps of 
bandwidth and a three-hop mesh net-
work yielding an effective bandwidth 
of 10 kbps, the algorithm can still sup-
port relearning for every node every 
day using 55 percent of the total net-
work bandwidth. Of course, these are 
worst-case estimates because learning 
reduces the bandwidth requirements. 
Using the 10-kbps ZigBee network 
with each node learning one day a 
week, the algorithm would require 
7.9 percent of network bandwidth; re-
learning one day per month would re-
quire 1.8 percent.

Regarding the computational cost, 
the primary bottleneck is the learn-
ing phase in the ESP back office. Al-

though it depends on the parameters, 
we needed less than a minute in our 
tests to build a static state table from 
one day of data on a typical desktop 
PC. Thus, one machine can handle ap-
proximately 1,440 (24 × 60) homes per 
day. Only three (4,000/1,440) proces-
sor cores per backhaul point are suf-
ficient, even when learning every day, 
assuming learning is scheduled to fully 
utilize computational resources.

NILSV Benefits
The industry is overwhelmingly head-
ing toward demand-response pro-
grams in which the ESP directly con-
trols home appliances. Such control 
will become increasingly important 
with the adoption of plug-in electric 
vehicles, which will add significant 
load to the grid. ESP-approved load-
control devices and appliances will 
receive signals from the ESP and re-
spond to verify status and compliance 
with load-shed requests. Typically, 
these home-area-network (HAN) de-
vices will receive load-shed commands 
sent through the AMI network to the 
meter, which will then be relayed into 
the home via a short-range ZigBee 
wireless gateway in the meter. LSI re-
sponses will follow the reverse path. 
We call this the meter gateway archi-
tecture (MGA).1

This MGA vision is fraught with 
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problems. The ESP must trust all the 
load-control devices and appliances in 
the customer’s home to behave prop-
erly. Accordingly, the proposed solu-
tions generally envision cryptographic 
keys in every HAN device. With ap-
propriate tamper-resistance techniques 
and key management infrastructures, 
such systems can deliver a high degree 
of assurance that load-control devices 
receive and reply to LSIs as intended. 
However, tamper resistance and cryp-
tography can add significant manu-
facturing costs to devices as well as 
system-management complexity. Most 
ESPs will likely support only a few spe-
cific devices for their service area. This 
will limit demand-response programs’ 
acceptance and inhibit interoperability 
for devices belonging to a consumer 
who moves to another service area. 
Again, in most cases, the loads to con-
trol are large appliances retrofitted with 
load-control devices.

Even with tamper resistance and 
cryptography ensuring that load- 
control devices are behaving properly, 
extending this trust to include the load 
itself is much harder. For example, 
many HVAC systems are controlled 
with a simple 24-volt AC signal. The 
sophisticated security in the demand-
response thermostat is meaningless 
if the control wires don’t connect to 
the intended load. In summary, the 
MGA seems likely to result in com-
plex, expensive, inflexible, and inse-
cure solutions with limited consumer 
acceptance.

By decoupling load control from 
load-shed verification, NILSV enables 

simpler, more flexible demand-response 
architectures. The meter is the only 
trusted device at the residence. Because 
it’s already trusted to deliver total bill-
ing data, adding NILSV functions to it 
contributes minimal incremental risk. 
Load-control devices don’t require the 
ESP’s trust, tamper resistance, or pri-
vate keys.

Because power measurements at 
the meter determine compliance with 
load-shed messages, NISLV confirms 
both the integrity of load-shed mes-
sages and responses and the load’s be-
havior. Load aggregators can deliver 
load-shed messages through the meter, 
various broadcast channels, the con-
sumer’s broadband connections, or 
other channels that require only one-
way communication. Load-shed mes-
sages must be authenticated, but this is 
much simpler than authenticating re-
sponses because there are fewer load-
shed-message senders than response 
senders. For load-shed messages de-
livered via the consumer’s broadband, 
the delivery and authentication mech-
anism could be as simple as a Web 
server delivering pages authenticated 
via HTTPS.

The load-control devices’ simplic-
ity will more readily facilitate the 
development of a standard messag-
ing protocol. These load-control de-
vices, which are usable with any ESP’s  
demand-response program, will be-
come common consumer electronics, 
available at retail stores.

With an appropriate load-shed lan-
guage wherein an LSI specifies only a 
goal, such as “limit device X to Y per-

cent of maximum load until time T,” 
and leaves that goal’s implementation 
up to the load-control device, demand-
response programs can be flexible and 
accommodate a variety of load-control 
devices. The only requirement is that 
the load-control device’s response to 
load-shed messages is measurable by 
NILSV at the meter. Demand-reduction 
programs can compensate consumers 
for participation only when LSIs pro-
duce actual load reduction. NILSV al-
lows for simpler, cheaper load-control 
devices with greater variety and simpler 
messaging and management that will 
likely lead to more flexible demand- 
response programs and greater con-
sumer adoption.

N ILSV monitors demand-
response compliance 
without extra communi-
cation overhead between 

appliances and meters. Our proposed 
method addresses smart-grid issues 
including the low-end metering hard-
ware and the constrained bandwidth 
links between the meters and their 
head ends. 

Our method uses the meter as a 
trusted party and eliminates any com-
munication with untrusted appliances. 
Doing this circumvents many potential 
integrity and confidentiality problems. 
However, we must conduct more re-
search to determine the accuracy of the 
NILM algorithms at the ESP before the 
solution is ready for use.

The biggest problem we encountered 
was when appliances had the same 
power signature. Because this was the 
only metric distinguishing the two ap-
pliances, the system classified them as 
one appliance. The algorithm then gen-
erated the appliance table incorrectly. 
We plan to address this problem.
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Figure 7. A heater detection scenario. 
The results show a detailed appliance 
detection analysis on an evening power-
use graph. 
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Furthermore, we must assess the ef-
ficiency of the algorithm on the meter 
and ascertain the computing power 
necessary on the back end to process 
the data. We also need to examine the 
average amount of time the meters need 
to be in the learning phase. For these 
analyses to be accurate, they’ll need to 
employ a large set of real-world data.

Finally, we must produce a viable 
NILM scheme and improve appliance 
classification. Currently, we use only 
real power to identify appliances. Clas-
sifying appliances on the basis of time 
and frequency of use and other less- 
deterministic measurements is an inter-
esting possibility.
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